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What is this talk about?

This talk is about what I’ve worked on throughout my career, namely

(i) solving
∆u+ k2u = 0

by integral equation methods.

And what I’ve worked on for much of my career

(ii) understanding how everything depends on k.

These are large topics, e.g. C-W, Graham (2009), C-W, Graham, Langdon,
Spence (2012), C-W, Langdon (2015), C-W, Spence, Gibbs, Smyshlyaev (2020),
or indeed see any of the lectures this week!

Focus today on scattering in Rd (d ≥ 2) by compact obstacle, O, with
Dirichlet boundary conditions, the so-called sound-soft case in acoustic
terminology.

The wave propagation is in Ω := Rd \O, the complement of and exterior of O,
which we assume is connected.

I’ll consider two, related, variants of this problem.
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Variant 1: Scattering Problem

uinc

O

u = 0

∆u+ k2u = 0

Ω

u− uinc satisfies Sommerfeld rad. cond. (SRC)

Variant 2: Source Problem (source is f)

O

v = 0

∆v + k2v = f (compactly supported)

Ω

v satisfies SRC, i.e.
∂rv − ikv = o(r−(d−1)/2) as r := |x| → ∞.
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Variant 1: Scattering Problem

uinc

O

u = 0

∆u+ k2u = 0

Ω
u− uinc satisfies SRC

Example 2D Boundary Element Method (BEM) computation when

uinc(x) = exp(ikx · d̂) is a plane wave and O is a polygon, using an
asymptotic-numerical hp-BEM (C-W, Hewett, Langdon, Twigger, 2015) and O(1)
degrees of freedom as k → ∞.
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O

u = 0
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Ω
u− uinc satisfies SRC

Example 3D BEM computation when uinc(x) = exp(ikx · d̂) is a plane wave and O
is a Sierpinski tetrahedron (Caetano, C-W, Claeys, Gibbs, Hewett, Moiola 2024)

Mostly we will assume O is Lipschitz or smoother. At the end we treat general
compact O.



Variant 1: Scattering Problem

uinc

O

u = 0

∆u+ k2u = 0

Ω
u− uinc satisfies SRC

Example 3D BEM computation when uinc(x) = exp(ikx · d̂) is a plane wave and O
is a Sierpinski tetrahedron (Caetano, C-W, Claeys, Gibbs, Hewett, Moiola 2024)

Mostly we will assume O is Lipschitz or smoother. At the end we treat general
compact O.



Our aims

1. To recall old and new reformulations of the above scattering problem as
boundary integral equations, each taking the form

Akϕ = g

where ϕ ∈ H, some Hilbert space of functions on O, g ∈ H∗, and Ak : H → H∗

is some boundary integral operator.

2. To obtain bounds on ∥A−1
k ∥ that are explicit in k, and that make clear the

influence of the geometry of O - and the usefulness of resolvent estimates!

Our motivations from numerical analysis are that bounds on ∥A−1
k ∥, together

with bounds on ∥Ak∥, see, e.g., Han & Tacy (2015), C-W et al (2009, 2020),
which give us bounds on the condition number cond(Ak) := ∥Ak∥∥A−1

k ∥:
Are needed for wavenumber-explicit bounds on errors in BEM, e.g.,
hp-Galerkin BEM (Löhndorf & Melenk 2011)

Indicate sensitivity of the numerical solution to uncertainty or discretisation
errors

Lead to bounds on condition numbers at a discrete level (Betcke et al 2011),
which are related to the convergence of iterative solvers, e.g. GMRES
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hp-Galerkin BEM (Löhndorf & Melenk 2011)

Indicate sensitivity of the numerical solution to uncertainty or discretisation
errors

Lead to bounds on condition numbers at a discrete level (Betcke et al 2011),
which are related to the convergence of iterative solvers, e.g. GMRES



Our aims

1. To recall old and new reformulations of the above scattering problem as
boundary integral equations, each taking the form

Akϕ = g

where ϕ ∈ H, some Hilbert space of functions on O, g ∈ H∗, and Ak : H → H∗

is some boundary integral operator.

2. To obtain bounds on ∥A−1
k ∥ that are explicit in k, and that make clear the

influence of the geometry of O - and the usefulness of resolvent estimates!

Our motivations from numerical analysis are that bounds on ∥A−1
k ∥, together

with bounds on ∥Ak∥, see, e.g., Han & Tacy (2015), C-W et al (2009, 2020),
which give us bounds on the condition number cond(Ak) := ∥Ak∥∥A−1

k ∥:
Are needed for wavenumber-explicit bounds on errors in BEM, e.g.,
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Overview of Talk

1 What is this talk about?

2 A key tool: resolvent estimates
What are they?
The known estimates and their geometries

3 Applications to Boundary Integral Equations
The standard Burton-Miller 2nd kind BIE
The standard 1st kind BIE
A new 1st kind IE

4 Conclusions



What is a resolvent estimate?

u = 0

∆u+ k2u = f

u satisfies SRC

It’s a bound, explicit in k, on the (outgoing) cutoff resolvent for this problem, i.e.
on

∥χ(−∆D − k2)−1χ∥L2→L2 ,

where χ ∈ C∞
0 and −∆D is the Dirichlet Laplacian.

Explicitly, it’s the wavenumber-explicit bound that, for all R, k0 > 0 and some
specified c(k),

∥u∥L2(ΩR) ≲ c(k)∥f∥L2(ΩR), for k ≥ k0 > 0.

A ≲ B means A ≤ CB, where C > 0 independent of k and f , but depends on
R and k0.
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The known estimates and their geometries

ΩR

y

∆u+ k2u = f
f supported in ΩR

Suppose that O is star-shaped, i.e., for some y ∈ O,

x ∈ O ⇒ sy + (1− s)x ∈ O, ∀s ∈ (0, 1).

Then (Morawetz 1975, C-W & Monk 2008)

∥u∥L2(ΩR) ≲ k−1∥f∥L2(ΩR), i.e. c(k) = k−1.

This is a sharp bound: achieved by u(x) = χ(x) exp(ikx1), if χ ∈ C∞
0 (ΩR).
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The known estimates and their geometries

ΩR

∆u+ k2u = f
f supported in ΩR

The same bound

∥u∥L2(ΩR) ≲ k−1∥f∥L2(ΩR), i.e. c(k) = k−1,

holds, more generally, for nontrapping obstacles (C∞: Morawetz, Ralston, Strauss

1977, Vainberg 1975, Melrose & Sjöstrand 1982; polygon: Baskin & Wunsch 2013).
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ΩR

The same bound

∥u∥L2(ΩR) ≲ k−1∥f∥L2(ΩR), i.e. c(k) = k−1,

holds, more generally, for nontrapping obstacles (C∞: Morawetz, Ralston, Strauss

1977, Vainberg 1975, Melrose & Sjöstrand 1982; polygon: Baskin & Wunsch 2013).
Nontrapping: there exists T > 0 such that all the billiard trajectories starting in
ΩR at time zero leave ΩR by time T .



The known estimates and their geometries

ΩR

∆u+ k2u = f
f supported in ΩR

General C∞ “worst case” bound (Burq 1998): for some α > 0,

∥u∥L2(ΩR) ≲ exp(αk)∥f∥L2(ΩR), i.e. c(k) = exp(αk).

Achieved for some km → ∞ when there is elliptic, stable trapping (Cardoso,

Popov 2002). In the above geometry (Betcke et al 2011) by the quasimode

u(x) := χ(x)ueigkm
(x),

with χ ∈ C∞
0 (ΩR) such that χ = 1 near the trapped ray and u = 0 on ∂Ω.
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The known estimates and their geometries

ΩR

∆u+ k2u = f
f supported in ΩR

Two or more C∞ strictly convex, positive curvature obstacles
(Ikawa 1988, Burq 2004), example of hyperbolic, unstable trapping

∥u∥L2(ΩR) ≲ k−1 log(2 + k)∥f∥L2(ΩR), i.e. c(k) = k−1 log(2 + k),

so only logarithmically worse than the nontrapping case
- cf. Semiclassical Scattering Exercise Session 2!
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The known estimates: parabolic, neutral trapping

ΩR

∆u+ k2u = f
f supported in ΩR

Theorem (C-W, Spence, Gibbs, Smyshlyaev 2020)

∥u∥L2(ΩR) ≲ k∥f∥L2(ΩR), i.e. c(k) = k.

Applies to a general Lipschitz obstacle class, in particular when

xded · n(x) ≥ 0 on the boundary
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Recap of resolvent estimates

∥u∥L2(ΩR) ≲ c(k)∥f∥L2(ΩR), for k ≥ k0 > 0,

c(k) = k−1 log(2 + k) c(k) = kc(k) = exp(αk)

hyperbolic & C∞ parabolicelliptic & C∞

where c(k) = k−1 for nontrapping obstacles, and

Additionally (Lafontaine, Spence, Wunsch 2021), if O is Lipschitz and we avoid
the wavenumber sequences for which there is strong trapping then (almost)
c(k) = k5d/2: precisely, given δ, ε > 0 there exists E ⊂ [k0,∞) with |E| < ε such
that the resolvent estimate holds with

c(k) = k5d/2+δ, for k ∈ [k0,∞) \ E.

See Siavash Sadeghi’s poster for more info ... or talk to David, Euan or Jared!
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Integral Equations and k-Explicit Bounds

uinc

Γ u = 0

∆u+ k2u = 0

Ω+

Ω− u− uinc satisfies SRC

Let Ω+ := Ω and assume Ω− := int(O) is Lipschitz and O = Ω−, and put
Γ := ∂O = ∂Ω±.

Theorem (Green’s Representation Theorem)

u(x) = uinc(x)−
∫
Γ

Φ(x, y)∂+n u(y) ds(y), x ∈ Ω+,

where

Φ(x, y) :=
i

4
H

(1)
0 (k|x− y|) (2D), :=

1

4π

eik|x−y|

|x− y|
(3D).
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If η ∈ R, η ̸= 0, then this integral equation is uniquely solvable in L2(Γ).

The standard choice is η = k, and with this choice we have
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k,k∥L2(Γ)→L2(Γ) ≲ 1

if Ω− is star-shaped (C-W, Monk 2008) or C∞ and nontrapping (Baskin, Spence,

Wunsch 2016). Where does this bound come from and what if Ω− is trapping?
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Γ u = g ∈ H1(Γ)

∆u+ k2u = f ∈ L2(Ω+), compactly supported

Ω+

Ω− u satisfies SRC

A recipe for bounding ∥A−1
k,k∥ (Baskin, Spence, Wunsch 2016, C-W, Spence, Gibbs,

Smyshlyaev 2020)

Step 1 (Resolvent Estimate). Show that, for every R > 0, if g = 0,

∥u∥L2(ΩR) ≲ c(k)∥f∥L2(Ω+),

where ΩR := {x ∈ Ω+ : |x| < R}.
Step 2 (DtN Map Bound). It follows that, if f = 0,

∥∂+
n u∥L2(Γ) ≲ kc(k)

(
∥∇Γg∥L2(Γ) + k∥g∥L2(Γ)

)
Step 3 As (C-W, Graham, Langdon, Spence 2012)

A−1
k,k = I − (DtN+

k − ik)ItD−
k

and bounding ItD−
k as in Baskin, Spence, Wunsch (2016), it follows that

∥A−1
k,k∥L2(Γ)→L2(Γ) ≲ kc(k)

.
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Recap of resolvent estimates

∥u∥L2(ΩR) ≲ c(k)∥f∥L2(ΩR), for k ≥ k0 > 0,

c(k) = k−1 log(2 + k) c(k) = kc(k) = exp(αk)

hyperbolic & C∞ parabolicelliptic & C∞

where c(k) = k−1 for nontrapping obstacles, and

Further, for all Lipschitz O and all δ, ε > 0, there exists E with |E| ≤ ε, such that

c(k) = k5d/2+δ, k ∈ [k0,∞) \ E.

Applying our general recipe

∥A−1
k,k∥L2(Γ)→L2(Γ) ≲ k3/2c(k),

in all these cases, indeed ∥A−1
k,k∥ ≲ kc(k) if O is C∞.
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1st Kind BIE (see Siavash Sadeghi’s poster for details)

uinc

Γ u = 0

∆u+ k2u = 0

Ω+

Ω− u− uinc satisfies SRC

Theorem (Green’s Representation Theorem)

u(x) = uinc(x)−
∫
Γ

Φ(x, y)∂+n u(y) ds(y), x ∈ Ω+.

Taking the Dirichlet (γ+) trace we get the 1st kind boundary integral equation∫
Γ

Φ(x, y)∂+n u(y)ds(y) = F (x) := γ+u
inc(x), x ∈ Γ,
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Φ(x, y)∂+n u(y)ds(y) = F (x), x ∈ Γ,

in operator form
Sk∂

+
n u = F := γ+u

inc.

It is standard that Sk invertible iff k2 ̸∈ spec(−∆D(Ω−)), indeed

S−1
k = DtN−

k −DtN+
k .

Further, by our previous recipe, ∥DtN+
k ∥ ≲ kc(k). Similarly (C-W & Sadeghi

2024+),

∥DtN−
k ∥ ≲ kc−(k) ≲

k

dist(k2, spec(−∆D(Ω−)))
,

using that −∆D(Ω−) is self-adjoint, so that

c−(k) = ∥(∆D + k2)−1∥L2(Ω−)→L2(Ω−) =
[
dist(k2, spec(−∆D(Ω−)))

]−1
.
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Comparing 1st & 2nd Kind BIEs: general Lipschitz Ω−

uinc

Γ u = 0

∆u+ k2u = 0

Ω+

Ω− u− uinc satisfies SRC

2nd kind BIE 1st kind BIE
Ak,k∂

+
n u = f Sk∂

+
n u = f

Invertible for all k > 0 Invertible for k2 ̸∈ spec(−∆D(Ω−))

A−1
k,k = I − (DtN+

k − ik)ItD−
k S−1

k = DtN−
k −DtN+

k

∥A−1
k,k∥ ≲ k(5d+3)/2+δ ∥S−1

k ∥ ≲ k(5d+2)/2+δ

The bounds in the last row hold for k ∈ [k0,∞) \E, with |E| and δ > 0 arbitrarily
small; for the S−1

k bound see Siavash’s poster.

Conjecture.

∥DtN+
k ∥, ∥A−1

k,k∥, ∥S
−1
k ∥ ≲ kd log2(2 + k), k ∈ [k0,∞) \ E.
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1st kind IE for general compact O (Caetano et al 2024)

uinc

u = 0

∆u+ k2u = 0

Ω
O u− uinc satisfies SRC

Recall O is compact and Ω := Rd \O is connected, and assume uinc ∈ H1,loc(Rd).

Step 1. Choose a compact Γ such that

∂Ω = ∂O ⊂ Γ ⊂ O.

Step 2. Look for a solution in the form u = uinc +Aϕ, for some ϕ ∈ H−1(Rd)
supported on Γ, where

Aψ(x) :=
∫
Rd

Φ(x, y)ψ(y) dy, for ψ ∈ L2
comp(Rd), x ∈ Rd.

Step 3. Enforce u = 0 on ∂Ω by requiring u = 0 on Γ, in the sense that, where
Ω∗ := Rd \ Γ and χ ∈ C∞

0 (Rd) with χ = 1 near Γ,

χu ∈ H̃1(Ω∗) := C∞
0 (Ω∗)

H1(Rd)
.
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In other words, we require, where P : H1(Rd) → H̃1(Ω∗)⊥ is orthogonal projection, that

P (χu) = 0 ⇔ Skϕ = g := −P (χuinc), where Skϕ := P (χAϕ).
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Skϕ = g can be solved by Galerkin BEM (Caetano et al 2024)

Example computation: Γ = O = ∂O = Sierpinski tetrahedron,

u = uinc +Aϕ,
where ϕ ∈ H−1

Γ := {ψ ∈ H−1(Rd) : supp(ψ) ⊂ Γ} satisfies

Skϕ = g := −P (χuinc), where Skϕ := P (χAϕ).

Plotted is the scattered field Aϕ.
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uinc

Γu = 0

∆u+ k2u = 0

Ω
O u− uinc satisfies SRC

Recap. Γ is compact with ∂Ω = ∂O ⊂ Γ ⊂ O. Look for solution as u = uinc +Aϕ,
where

Aψ(x) :=
∫
Rd

Φ(x, y)ψ(y) dy, for ψ ∈ L2
comp(Rd), x ∈ Rd,

and ϕ ∈ H−1(Rd) is supported on Γ, i.e., ϕ ∈ H−1
Γ ⊂ H−1(Rd).

This satisfies the
scattering problem iff

Skϕ = g := −P (χuinc), where Skϕ := P (χAϕ),

Ω∗ := Rd \ Γ, and P : H1(Rd) → H̃1(Ω∗)⊥ = (H−1
Γ )∗ is orthogonal projection.

Theorem (Caetano et al 2024, C-W & Sadeghi 2024+)

Let Ω− := O \ Γ, and c(k) and c−(k) denote the bounds in the resolvent estimates for Ω
and Ω−. Then Sk : H−1

Γ → (H−1
Γ )∗ is invertible iff k2 ̸∈ spec(−∆D(Ω−)), and

∥S−1
k ∥ ≲ k2c(k) + k2c−(k) ≲ k(5d+4)/2+δ

for k ∈ [k0,∞) \ E with |E| ≤ ε, if Ω is Lipschitz.
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Conjecture

Let Ω− := O \ Γ, and c(k) and c−(k) denote the bounds in the resolvent estimates for Ω
and Ω−. Then

∥S−1
k ∥ ≲ kc(k) + kc−(k) ≲ kd+1 log2(2 + k),

for k ∈ [k0,∞) \ E with |E| ≤ ε, for every obstacle O.



Conclusions

In this talk you have seen:

All the resolvent estimates that exist for (Dirichlet) obstacles, including

hyperbolic parabolicelliptic

The standard 1st and 2nd kind BIEs when O is Lipschitz, and a new 1st kind
integral equation for general compact O

How resolvent estimates lead in a “black box” way to:

bounds on (exterior and interior) DtN maps
bounds on ∥A−1

k,k∥, ∥S
−1
k ∥, ∥S−1

k ∥

Lots of open problems:

our conjectures above;

are all our estimates for integral operators in terms of resolvent estimates
sharp?

resolvent estimates are missing, or need sharpening, for many configurations,
notably where the obstacle is non-smooth, e.g. Lipschitz or fractal
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Example open problems

Thin curved screen: resolvent estimate? Fractal: resolvent estimate?
Bound on ∥S−1

k ∥? Sharp bound on ∥S−1
k ∥?



Conclusions

In this talk you have seen:

All the resolvent estimates that exist for (Dirichlet) obstacles, including

hyperbolic parabolicelliptic

The Morawetz/Rellich identity method for proving these estimates

The standard 1st and 2nd kind BIEs when O is Lipschitz, and a new 1st kind
integral equation for general compact O
How resolvent estimates lead in a “black box” way to:
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