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1 WKB solutions
Solution to Exercise 1

1. We plug the ansatz into the equation −h2

2 ∆u+V u = 0 and group terms according to powers of h. The
O(h0) terms give the Eikonal equation. The O(h) terms give the transport equation. See the lecture
notes or [1, Chapter 2].

2. For any x ∈ {x1 = 0}, the o.d.e.
d

dt
x(t) = ∇ϕ (x(t))

with initial datum x(t) = x can be solved locally by the Cauchy–Lipschitz theorem, locally uniformly
with respect to x. Then it holds for any a ∈ C∞(Rd) and x ∈ {x1 = 0}:

d

dt
a (S(t)x) = (∇ϕ · ∇a) (S(t)x) = −1

2
(a∆ϕ) (S(t)x) ,

from which we deduce that

a (S(t)x) = a(x) exp

(
−1

2

∫ t

0

(∆ϕ) (S(t)x)

)
.

Therefore, solutions a0 to the transport equation with initial datum a0|x1=0 = b ∈ C∞(Rd−1) can be
written

a0(S(t)x) = b(x) exp

(
−1

2

∫ t

0

(∆ϕ) (S(t)x)

)
, x ∈ {x1 = 0}.

Solution to Exercise 2
1. We change variables to check that ‖uh‖L2 = ‖u‖L2 . Setting h = E−1, we have

−h2

2
u′′
h(x) +

x2

2
uh(x) = −h

2
u′′(h−1/2x) + h

(h−1/2x)2

2
u(h−1/2x) = hEu(h−1/2x) = uh.

2. The trajectory of the Hamiltonian flow starting from (x0, ξ0) is the map t 7→ (xt, ξt) satisfying

d

dt

(
xt

ξt

)
= H

(
xt

ξt

)
=

(
ξt

−xt

)
,

(
x0

ξ0

)
=

(
x0

ξ0

)
In particular, it holds ẍt = −xt. This is solved by linear combinations of cos t and sin t. Matching the
initial data, we obtain (

xt

ξt

)
=

(
x0 cos t+ ξ0 sin t
−x0 sin t+ ξ0 cos t

)
.

3. Let νE be the uniform probability measure on the circle of radius
√
2E. Then the classical probability

density at energy E is the pushforward measure π∗νE , where π(x, ξ) = x is the cotangent bundle
projection. Then for any f ∈ C0

c (R), we have∫
R
f(x) dπ∗νE(x) =

∫
√
2ES1

(f ◦ π)(θ) dνE(θ) = (2π)−1

∫ 2π

0

f
(√

2E cos t
)
dt.
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We use the change of variables y =
√
2E cos t whose Jacobian is

√
2E| sin t| =

√
2E − y2 to obtain∫

R
f(x) dπ∗νE(x) = π−1

∫ √
2E

−
√
2E

f(y)
dy√

2E − y2
.

4. Taking square roots, the Eikonal equation reads

ϕ′(x) = ±
√

2E − x2,

which in turn gives
ϕ(x) = C ±

∫ x

0

√
2E − y2 dy.

It remains to compute the integral. We set the change of variables sin t = y/
√
2E, for which we have√

2E − y2 dt = dy, and therefore∫ x

0

√
2E − y2 dy =

∫ arcsin x√
2E

0

2E cos2 t dt = E arcsin
x√
2E

+ E

∫ arcsin x√
2E

0

cos(2t) dt

= E arcsin
x√
2E

+
E

2
sin

(
2 arcsin

x√
2E

)
= E arcsin

x√
2E

+ E
x√
2E

cos

(
arcsin

x√
2E

)
= E arcsin

x√
2E

+ E
x√
2E

√
1− x2

2E
,

which concludes the proof.

5. Note that ϕ′(x) =
√
2E − x2 and ϕ′′(x) = −x(2E − x2)−1/2 so that the transport equation reduces to

a′0(x) =
x/2

2E − x2
a0(x).

The map 1
4 log |2E − x2| is a primitive of the factor in the right-hand side, so that solutions to this

o.d.e. are of the desired form. We observe that the modulus squared of the amplitude a0 gives back
the classical probability density. This also matches the profile of the amplitude on Figure 1.

6. We change variables by setting X = ±(x− x±)/α for some α > 0 to be determined. Writing Uh(X) =
uh(±αX + x±) = uh(x), we have

U ′′
h (X) = α2u′′

h(±αX + x±) = α2 2

h2

√
2EαXuh(±αX + x±) = α3 2

3/2E1/2

h2
XUh(X).

Choosing α = 2−1/2E−1/6h2/3, we see that Uh solves the Airy equation. Rewriting uh(x) = Uh(X) =
Ai(X) in terms of the x variable yields the desired result. This holds for x = x± + O(h3/2) (the
quadratic error term in the Taylor expansion of the potential is then much smaller than the values of
Uh(X)).

7. (If time allows:) The above computations generalize to smooth confining potentials with a unique
critical point for instance, although the solutions to the Eikonal and transport equations are not as
explicit as for the harmonic oscillator (they involve a primitive of

√
2E − V (x)...).

Solution to Exercise 3
We refer to [2, Proposition 3.25] or [3, Theorem 4.15].
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2 Semiclassical wave front set and defect measures
Solution to Exercise 4

• Let us show that WFhe
i
hα·x = Rd × {α}. Let ϕ be a cut-off function. Then it holds

Fh

(
ϕ(x)e

i
hα·x

)
(ξ) = Fhϕ(ξ − α) = h−d/2F1ϕ

(
ξ − α

h

)
. (2.1)

Now since ϕ is smooth, its Fourier transform has rapid decay, namely

∀n ∈ N, ∃Cn > 0 :
∣∣∣Fh

(
ϕ(x)e

i
hα·x

)
(ξ)

∣∣∣ ≤ Cnh
−d/2

(
1 +

|ξ − α|
h

)−n

= Cn
hn−d/2

(h+ |ξ − α|)n
.

For ξ in a sufficiently small neighborhood of ξ0 6= α, the denominator is bounded from below by a
positive constant, so we get O(h∞), namely (x0, ξ0) 6∈ WFhe

i
hα·x for any x0 ∈ Rd. This proves that

WFhe
i
hα·x ⊂ Rd × {α}. To prove the converse inclusion, we observe that taking ξ = ξ0 = α in (2.1),

we have
Fh

(
ϕ(x)e

i
hα·x

)
(ξ) = h−d/2F1ϕ(0) = (2πh)−d/2

∫
Rd

ϕ(x) dx,

which is not O(h∞) for general ϕ.

• The proof is quite similar for WFha: for any cut-off function ϕ, we have

|Fh(ϕa)(ξ)| = h−d/2

∣∣∣∣F1(ϕa)

(
ξ

h

)∣∣∣∣ ≤ Ch−d/2 hn

(h+ |ξ|)n
. (2.2)

In a neighborhood of any ξ0 6= 0, this is O(h∞) using the rapid decay of F1(ϕa). In addition, if ϕ is
supported away from the support of a, this is zero for all ξ. This shows that WFha ⊂ supp a × {0}.
Now if ϕ is supported in the open set {a > 0}, then from (2.2), |Fh(ϕa)(ξ)| is not O(h∞) for general
ϕ, which shows that {a > 0} × {0} ⊂ WFha. Yet the wave front set is closed and {a > 0} = supp a,
so we finally conclude that WFha = supp a× {0}.

Solution to Exercise 5
Let Pj := h

i ∂j − ∂jϕ(x) = Oph(pj) with pj(x, ξ) = ξj − ∂jϕ(x). Let (x0, ξ0) 6∈ Graph(dϕ) = {ξ = dϕ(x)}.
Then there exists an index j such that pj(x0, ξ0) 6= 0. Since Pje

i
hϕ = 0 = O(h∞), we obtain by definition

of the wave front set that WFhe
i
hϕ ⊂ Graph(dϕ). The converse inclusion follows from Exercise 7 (in fact

stationary phase).
We refer to [3, Examples pp. 189-190] for more examples.

Solution to Exercise 6
Denote by π : T ⋆Rd → Rd the cotangent bundle projection π(x, ξ) = x.

1. (bump function going to infinity) The sequence (uh)h classically converges weakly in L2 to 0. In par-
ticular, the pushforward measure π∗µ vanishes, so µ = 0 is the unique semiclassical measure associated
with (uh)h.

2. (Gaussian wave packet) We let a ∈ S(Rd) and compute the inner product

(uh,Oph(a)uh)L2 = (2πh)−d

∫
Rd

∫
R2d

ūh(x)e
i
h ξ.(x−y)a(x, ξ)uh(y) dydξdx

= (2πh)−d(πh)−d/2

∫
Rd

∫
R2d

exp

(
−|x− x0|2 + |y − x0|2

2h

)
e

i
h (ξ−ξ0).(x−y)a(x, ξ) dydξdx.
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We compute the integral over y:

(2π)−d/2

∫
Rd

(πh)−d/4 exp

(
−|y − x0|2

2h

)
e−

i
h (ξ−ξ0).y dy = e−

i
h (ξ−ξ0).x0F1

(
(πh)−d/4e−

|•|2
2h

)(
ξ − ξ0

h

)
= (π/h)−d/4e−

i
h (ξ−ξ0).x0 exp

(
−|ξ − ξ0|2

2h

)
.

We finally obtain

(uh,Oph(a)uh)L2 = (2π)−d/2h−dπ−d/2

∫
R2d

exp

(
−|x− x0|2 + |ξ − ξ0|2

2h

)
e

i
h (ξ−ξ0).(x−x0)a(x, ξ) dxdξ.

We can rewrite this as

(uh,Oph(a)uh)L2 = 2d/2
∫
R2d

e
i
h (ξ−ξ0).(x−x0)a(x, ξ) dµh(x, ξ)

where
dµh(x, ξ) = (2πh)−d exp

(
−|x− x0|2 + |ξ − ξ0|2

2h

)
dxdξ

is a probability measure. The sequence of measures µh classically converges to δ(x0,ξ0) weakly. Therefore

(uh,Oph(a)uh)L2 = Ca(x0, ξ0) + o(1)

as h → 0, where

C := 2d/2
∫
R2d

e
i
h (ξ−ξ0).(x−x0)dµh(x, ξ) = 2d/2

∫
R2d

eiξ.x(2π)−d exp

(
−|x|2 + |ξ|2

2

)
dxdξ

is independent of h by changing variables. Yet for a ≡ 1, we have

1 = ‖uh‖2L2 = C + o(1),

so that finally
(uh,Oph(a)uh)L2

h→0−−−→ a(x0, ξ0),

that is to say µ = δ(x0,ξ0).

3. (plane wave) We compute for any a ∈ S(R2d):

〈ūh,Oph(a)uh〉S′,S(R2d) = (2πh)−d

∫
Rd

∫
R2d

e
i
h ((ξ−h1−βα).(x−y)a(x, ξ) dydξdx = a(x, h1−βα),

where we used the Fourier inversion formula. Therefore

〈ūh,Oph(a)uh〉S′,S(R2d) =

∫
R2d

a(x, ξ) dδRd×{h1−βα},

where δRd×{h1−βα} is the Lebesgue measure on Rd × {h1−βα}. Examining the weak limit of these
measures as h → 0, we obtain µ = δRd×{0} if β < 1, µ = δRd×{α} if β = 1 and µ = 0 if β > 1.

We refer to [3, Examples pp. 102-104] for more examples.

Solution to Exercise 7
We follow [3, Example 2 p. 103].

1. We have Pje
i
hϕ = 0 = o(1) as h → 0, with Pj = h

i ∂j − ∂jϕ(x) = Oph(ξj − ∂jϕ(x)). Therefore,
Proposition 2 gives supp µ ⊂

⋂
j{ξj = ∂j(x)} = Graph(dϕ). This can also be seen as a consequence of

the fact that WFhe
i
hϕ ⊂ Graph(dϕ).
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2. (a) Symbols of an operator Ah for the left, right or Weyl quantizations differ from a O(h) term, which
does not contribute to the semiclassical defect measure.

(b) We compute

(uh, a(x, hD)uh)L2 = (2πh)−d

∫
Rd

(∫
R2d

a(x, ξ)e
i
h (ξ.(x−y)−ϕ(x)+ϕ(y)b(x)b(y) dydξ

)
dx.

(c) The critical points satisfy ∂ξΦx = x − y = 0 and ∂yΦx = dϕ(y) − ξ, namely (y, ξ) = (x, dϕ(x)).
The Hessian matrix reads

∂2Φx(y, ξ) =

(
∂2ϕ(y) −1
−1 0

)
.

Its determinant is always ±1 (because ∂2Φx∂
2Φ⊤

x is upper triangular with 1 on the diagonal for
instance). To compute the signature, we can argue that it is constant along continuous non-
singular deformations of the matrix, since it is integer-valued. For instance, take

t 7−→
(
t∂2ϕ(y) −1

−1 0

)
,

which is non-singular for every t ∈ [0, 1], coincides with ∂2Φx(y, ξ) at t = 1 and has signature 0
for t = 0 (the spectrum is made of two eigenvalues, ±1, with multiplicity d).

(d) Proposition 3 gives ∫
R2d

a(x, ξ)e
i
hΦx(y,ξ)b(x)b(y) dydξ

h→0−−−→ a(x, dϕ(x))|b(x)|2,

which gives exactly the sought result.

Exercise 8: Back to the 1D harmonic oscillator.
Let (uh)h∈(0,1] satisfies Phuh = oL2(h) with Ph = −h2

2 ∆ + |x|2
2 − 1, any semiclassical defect measure µ is

supported in {x2+ξ2

2 = 1} and is invariant by the Hamiltonian flow. Therefore µ is a multiple of the uniform
measure on the circle of radius

√
2. It is a probability measure (done in the lecture notes–use factorization

from Melissa Tacy’s lecture).
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