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1 WKB solutions
Exercise 1: WKB ansatz in dimension d ≥ 1

Let V ∈ C∞(Rd) and consider the equation

−h2

2 ∆u+ V (x)u = 0, h ∈ (0, 1].

1. As was done in Lecture 1, derive from the ansatz u = (a0 + ha1 + · · · )e i
hϕ the first two steps of the

WKB approximation, namely the Eikonal equation
1

2
|∇ϕ|2 + V (x) = 0 (1.1)

and the transport equation
∇ϕ · ∇a0 +

1

2
(∆ϕ)a0 = 0, (1.2)

with aj ∈ C∞(Rd;C) and ϕ ∈ C∞(Rd;R).

2. Assuming ∂x1
ϕ vanishes nowhere on {x1 = 0}, solve locally around {x1 = 0} the transport equa-

tion (1.2) with initial data on {x1 = 0} in terms of the flow S(t) : x 7→ S(t)x of the vector field ∇ϕ.
(Hint: look for an o.d.e. on t 7→ a0(S(t)x) for x ∈ {x1 = 0}.)

Exercise 2: 1D harmonic oscillator
Our goal is to understand the asymptotic behavior of eigenfunctions of the semiclassical harmonic oscillator

−h2

2
u′′
h +

x2

2
uh = Ehuh, Eh ≈ 1, (1.3)

as h → 0. See Figure 1 for an illustration.

1. Suppose u is such that

−1

2
u′′ +

x2

2
u = Eu,

for some E � 1. Check that uh(x) := h−1/4u(h−1/2x) satisfies (1.3) with Eh = 1 and ‖uh‖L2 = ‖u‖L2 ,
for a suitably chosen parameter h.

2. Recall that the Hamiltonian vector field associated with the operator −h2

2
d2

dx2 + x2

2 is defined by

H(x, ξ) := ξ · ∂x − x · ∂ξ.

Draw this vector field in phase space (the (x, ξ) plane) and compute its integral curves (they parametrize
the circles { ξ2

2 + x2

2 = E}).

3. Justify why the classical probability density at energy E > 0 (namely the probability to find a classical
particle of energy E evolving according to the Hamiltonian flow) is given by

x 7−→ C√
E − 1

2y
2
1[−

√
2E,+

√
2E](x), (1.4)

for some constant C > 0 independent of E. Observe that it is peaked around the turning points of the
classical dynamics.
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Figure 1: 15th eigenfunction of the harmonic oscillator (green), corresponding probability density (red) and
classical probability density (dashed blue line). The classically allowed region lies between the two vertical
dotted lines.

4. Show that solutions to the Eikonal equation (1.1) in the classically allowed region {x2

2 ≤ E}, that is
to say the support of (1.4), are of the form

ϕ(x) = C ± E

(
arcsin

x√
2E

+
x√
2E

√
1− x2

2E

)
.

(Hint: one may use a trigonometric change of variables, related to the trajectories of the Hamiltonian
flow computed in Question 2.)

5. Still in the classically allowed region, show that solutions to the transport equation (1.2) are of the
form

a0(x) =
C

(2E − x2)1/4
,

for an arbitrary constant C > 0. Compare with the result of Question 3. Observe that this is consistent
with Figure 1.

6. Now we study the behavior of uh in (1.3) outside the classically allowed region, namely {|x| >
√
2E}.

Instead of using the WKB expansion, we linearize the potential near the turning points x± = x±(E) =
±
√
2E:

x2

2
=

x2
±
2

+ x± · (x− x±) +
(x− x±)

2

2
= E ±

√
2E(x− x±) +O

(
(x− x±)

2
)
. (1.5)

Pretending that one can neglect the quadratic remainder, (1.3) becomes

−h2

2
u′′
h ±

√
2E(x− x±)uh = 0 (1.6)

(we write E in place of Eh). We denote by Ai the Airy function, namely the non trivial solution of
y′′(x) = xy(x) going to zero at ±∞, illustrated on Figure 2. Check that

x 7−→ Ai
(
±
√
2E1/6x− x±

h2/3

)
is a solution to (1.6). Explain in which neighborhood of x± this approximation is relevant. Observe
that this is consistent with Figure 1.

7. (If time allows:) Discuss possible generalizations to a Schrödinger operator −h2

2
d2

dx2 + V (x) with a
confining potential V ∈ C∞(R).
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Figure 2: The Airy function.

Exercise 3: Borel summation (optional)
1. Recall why any sequence of complex numbers (an)n∈N are the Taylor coefficients of some smooth

function on Rd. (Hint: pick a cut-off function χ ∈ C∞
c (Rd; [0, 1]) equal to 1 near the origin and arrange

the formal Taylor series so that, for fixed x ∈ Rd, only finitely many terms contribute to the sum.)

2. Let (an(h))n∈N be an h-dependent sequence in C∞(Rd;C) and set

a(h) :=

∞∑
n=0

hnχ

(
h

rn

)
an(h),

where (rn)n∈N is a sequence of positive numbers. Convince yourself that for all N ∈ N, it holds

a(h)−
N∑

n=0

hnχ

(
h

rn

)
an(h) = O(hN+1)

provided rn → 0 sufficiently fast as n → ∞. (Rigorously, the O notation should refer to a Banach
norm or a Fréchet structure in some functional space. The decay of the sequence rn should take into
account the growth of norms of the an’s.)

2 Semiclassical wave front set and defect measures
We recall the following notation: for some h-dependent quantity Q(h), we write Q(h) = O(h∞) if for all
N ∈ N, there exists CN > 0 such that |Q(h)| ≤ CNhN , ∀h ∈ (0, 1]. Recall the definition of the semiclassical
Fourier transform

Fhu(ξ) := (2πh)−d/2

∫
Rd

u(y)e−
i
h ξ.ydy, F−1

h u(x) := (2πh)−d/2

∫
Rd

u(ξ)e
i
h ξ.xdξ. (2.1)

Also recall the result below from Lecture 2.

Proposition 1. A point (x0, ξ0) is not in WFhu if and only if there exists a cut-off function ϕ such that

Fh(ϕu) = O(h∞) in a neighborhood of ξ0.

Exercise 4
As an application of the above proposition, compute WFhe

i
hα·x for α ∈ Rd independent of h, and WFha

where a ∈ C∞(Rd;C) is independent of h.
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Exercise 5
Let ϕ ∈ C∞(Rd;C) have no critical points. Compute WFhe

i
hϕ(x). (Hint: prove it directly, or alternatively,

use that the wave front set is coordinate invariant as a subset of T ∗Rd and reduce to the case of a linear
phase as in the previous exercise.)

Exercise 6: Computation of defect measures
Compute the defect measures associated with the following families of functions:

1. (bump function going to infinity)

uh(x) := ϕ

(
x− 1

h

)
,

where ϕ ∈ L2(R);

2. (Gaussian wave packet)

uh(x) := (πh)−d/4 exp

(
−|x− x0|2

2h

)
e

i
h ξ0·x, x ∈ Rd,

where (x0, ξ0) is a fixed phase space point;

3. (plane wave)
uh(x) := e

i

hβ α·x, α ∈ Rd,

according to the values of β ∈ R.

Now recall the following result from Lecture 2.

Proposition 2. Let P = Oph(p) be an h-pseudo-differential operator acting on Rd. If (uh)h∈(0,1] is a
bounded sequence in L2(Rd) satisfying Puh = oL2(1) as h → 0, then any semiclassical defect measure µ
associated with (uh)h satisfies

supp µ ⊂ {p = 0}.

If moreover P is self-adjoint and Puh = oL2(h), then µ is invariant by the Hamiltonian flow of p, namely
Hpµ = 0 where

Hp =
∂p

∂ξ
· ∂x − ∂p

∂x
· ∂ξ.

Let us also recall the stationnary phase lemma (see Melissa Tacy’s lecture.)

Proposition 3 (Stationnary phase). Let a ∈ C∞
c (Rd;C) and ϕ ∈ C∞(Rd;R). Suppose ϕ has a unique

critical point x0 in supp a, namely ∂ϕ(x0) = 0, and that det ∂2ϕ(x0) 6= 0. Then it holds

(2πh)−d/2

∫
Rd

a(x)e
i
hϕ(x)dx −−−→

h→0

ei
π
4 sgn ∂2ϕ(x0)

| det ∂2ϕ(x0)|1/2
a(x0)e

i
hϕ(x0),

where sgn ∂2ϕ(x0) is the signature of the Hessian matrix ∂2ϕ(x0), i.e. the number of positive eigenvalues
minus the number of negative eigenvalues.

Exercise 7: Lagrangian state
Let ϕ ∈ C∞(Rd;C) have no critical point and b ∈ C∞

c (Rd;C) be independent of h. Let µ be a semiclassical
defect measures associated with

uh(x) := b(x)e
i
hϕ(x).

1. Using Proposition 2, quickly recall why supp µ ⊂ Graph(dϕ). (Hint: introduce the operator P =
h
i ∂j − ∂jϕ.)
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2. Now we want to prove the more precise result

µ = |b(x)|2δ{ξ=dϕ(x)}. (2.2)

Let a ∈ C∞
c (R2d;C), and denote by a(x, hD) the standard quantization (or left quantization) of a,

namely the operator
a(x, hD) := F−1

h (a(x, •)Fhu(•)) ,

where Fh is the semiclassical Fourier transform (2.1).

(a) Justify why semiclassical defect measures do not depend of the choice of quantization (standard,
Weyl...). (Hint: recall how a relates to the Weyl symbol of the operator a(x, hD) for instance.)

(b) Put the above inner product under the form

(uh, a(x, hD)uh)L2 = (2πh)−d

∫
Rd

(∫
R2d

a(x, ξ)e
i
hΦx(y,ξ)b(x)b(y)dydξ

)
dx,

with a phase Φx to be expressed explicitly.
(c) We fix x ∈ Rd and study the inner integral over (y, ξ) using the stationnary phase asymptotics.

Compute the unique critical point (y0, ξ0) of Φx. Compute the Hessian matrix ∂2Φx and check that
| det ∂2Φx(y0, ξ0)| = 1 and sgn ∂2Φx(y0, ξ0) = 0. (Hint: you can bypass the computation of the
signature and check in the end that the exponential factor involving the signature in Proposition 3
has to be equal to 1 since µ is a non-negative Radon measure.)

(d) Apply Proposition 3 to deduce the sought result (2.2).

Exercise 8: Back to the 1D harmonic oscillator.
Let (uh)h∈(0,1] be a bounded sequence in L2(Rd) such that (1.3) holds with Eh = 1 + o(h). Compute the
(unique) semiclassical defect measure associated with this sequence. Compare with the result of Question 3
of Exercise 2.
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