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1 What is scattering theory?
In mathematical physics, scattering can refer to several concepts:

1. The long time behaviour of a system of interacting particles (which will typically
come from far away, interact, possibly create new particles, which will go far away).

2. The long time behaviour of a nonlinear wave equation, and how it is related to a
linear wave equation with constant coefficients.

3. The long time behaviour of a linear wave equation with non-constant coefficients,
and how it is related to a linear wave equation with constant coefficients.

4. The spectral theory of an operator with non-constant coefficients (description of its
eigenfunctions and resolvent), and how it is related to the spectral theory of a model
operator with constant coefficients.

In quantum physics, particles are represented by waves, which can interact either
linearly or non-linearly, so that point Item 1 is the physical counterpart of Items 2 and 3.
The long time behaviour of a linear evolution problem is always strongly related to the
spectral properties of its generator, so that points Items 3 and 4 are strongly related.
Historically, scattering theory for linear PDEs (with non-constant coefficients) was more
focused on Item 3 (see [3]), but point Item 4 corresponds to the modern point of view (as
in [4]), and this is the one we will follow here. In these notes, we will follow the recent
book [2], and in particular, part of chapters 2, 3 and 4.

In all the sequel, we will consider d = 3, or d = 1 (when it makes proofs easier).

2 The free resolvent
Before describing the resolvent of operators with non-constant coefficients, we need to
describe the resolvent of the model operator with constant coefficients, namely, −∆.
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2.1 Definition and meromorphic continuation

For =λ > 0, consider the holomorphic family of operators

R0(λ) :=
(
−∆− λ2

)−1
: L2(Rd)→ L2(Rd).

As an easy application of the spectral theorem, we have

‖R0(λ)‖L2→L2 ≤
1

|λ|=λ
.

Proposition 2.1 (Green’s kernel of the free resolvent). For any f ∈ L2(Rd), and
any λ with =λ > 0, we have(

R0(λ)f
)
(x) =

∫
Rd

R0(x, y;λ)f(y) dy, (1)

where

R0(x, y;λ) =


i

2λ
eiλ|x−y|, if d = 1,

eiλ|x−y|

4π|x− y|
, if d = 3.

The map λ 7→ R0(x, y;λ) is meromorphic in all C, smooth in x and y, but it decays
when |x− y| → ∞ only when =λ > 0. Therefore, for any ρ ∈ C∞comp(Rd), the map

ρR0(λ)ρ : L2(Rd) −→ H2(Rd),(
ρR0(λ)ρf

)
(x) =

∫
R3

ρ(x)R0(x, y;λ)ρ(y)f(y) dy,

is well-defined for all λ ∈ C. In other words, the map R0(λ) : L2
comp(Rd) → H2

loc(Rd),
initially defined for =λ > 0, can be meromorphically continued to C (with a pole only at
λ = 0, when d = 1).

Remark 2.2. When d = 2, the Greens’s kernel can be expressed in terms of a Hankel
function: R0(x, y;λ) = i

4
H

(1)
0 (λ|x − y|). This function is more complicated than when

d = 1, 3, and it has a logarithmic singularity at λ = 0, so that it cannot be continued
meromorphically to C. However, most of the results presented here still hold when d = 2.

Remark 2.3. Here, we defined R0(λ) for =λ > 0, and we extended it to =λ ≤ 0. We
could also have started by defining R0(λ) for =λ < 0, and then extend it to =λ ≥ 0. The
two procedures don’t give the same result!

The first procedure gives what is called the outgoing resolvent, sometimes denoted by
R0(λ+ i0), to recall that it was first defined for =λ > 0, while the second one is called the
incoming resolvent, and is sometimes denoted by R0(λ− i0). This is explained in more
details in the following remark.

Remark 2.4 (Why is it called an outgoing resolvent?). If x ∈ R, we may write

1

x− λ2
= i

∫ +∞

0

ei(λ
2−x)t dt,

= −i
∫ 0

−∞
ei(λ

2−x)t dt,
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but the first expression only makes sense when =(λ2) > 0, while the second only makes
sense when =(λ2) < 0. By the spectral theorem, we may replace x with −∆, to obtain

(
−∆− λ2

)−1
= i

∫ +∞

0

ei(λ
2+∆)t dt, if =(λ2) > 0,

= −i
∫ 0

−∞
ei(λ

2+∆)t dt, if =(λ2) < 0.

Hence, if λ0 > 0, there are two reasonable ways of defining (−∆− λ2
0)−1,

as lim
ε↘0

i

∫ +∞

0

ei((λ0+iε)2+∆)t dt or as − lim
ε↘0

i

∫ 0

−∞
ei((λ0−iε)

2+∆)t dt.

The first limit involves eit∆, which is the Schrödinger propagator at positive times. Hence,
waves propagate in the future, from a compact region towards infinity: they are thus
outgoing. The second expression involves the Schrödinger propagator at negative times.
Here, waves go to infinity in the past: they are thus incoming.

The discussion here use the Schrödinger equation, but we could do a similar argument
using the wave propagator.

2.2 Characterization of outgoing functions

If =λ > 0, then the operator R0(λ) is the inverse of (−∆− λ2) : L2(Rd)→ L2(Rd). When
=λ ≤ 0, R0(λ) is only a right-inverse of (−∆− λ2):

∀f ∈ L2
comp(Rd), (−∆− λ2)R0(λ)f = f. (2)

However, we generally don’t have R0(λ)[(−∆− λ2)u] = u. This will hold only if u belongs
to the image of R0(λ), which we now describe.

Proposition 2.5. Let u ∈ H2
loc(Rd) such that (−∆ − λ2)u = 0 outside a compact

set K. The following conditions are equivalent:

1. There exists f ∈ L2
loc(Rd) such that u = R0(λ)f .

2. u satisfies the Sommerfeld radiation conditions:

∂u(x)

∂|x|
− iλu(x) = O|x|→+∞

(
1

|x|(d−1)/2

)
. (3)

3. u satisfies
∂u(x)

∂|x|
− iλu(x) = O|x|→+∞

(
1

|x|(d+1)/2

)
.

4. There exists a function h : Sd−1 → C such that

u(|x|ω) =
eiλ|x|

|x|(d−1)/2
h(ω) +O|x|→+∞

(
1

|x|(d+1)/2

)
.

If one of these conditions is satisfied, we say that f is outgoing.
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3 The resolvent for a perturbation of −∆
Now, we consider an operator

P = −∆ + V, (4)

with V ∈ L∞comp(Rd). More generally, all the results presented here would also apply to

Pu = −∇(A∇u) + V u, (5)

where A(x) is a positive definite matrix, with A ≡ Id outside a compact set.

Lemma 3.1. There exists C(V ) > 0 such that, for all λ ∈ C with =λ > C(V ), the
operator (−∆ + V − λ2) is invertible.

Proof. First, note that for all λ ∈ C with =λ > 0, we have

(−∆ + V − λ2)R0(λ) = Id + V R0(λ). (6)

Multiplication by V is a bounded operator, and R0 is small if =λ is large enough. Therefore,
‖V R0(λ)‖L2→L2 < 1 for =λ large enough. We may hence invert Id+V R0(λ) by a Neumann
series for =λ� 1. The result follows.

Theorem 3.2. Let V ∈ C∞comp(R3). The family of operators

(−∆ + V − λ2)−1 : L2
comp(Rd) −→ L2

loc(Rd)

extends as a meromorphic family of operators to λ ∈ C. Its poles are called the
(scattering) resonances of −∆ + V . If λ ∈ C is a resonance, then ker(−∆ + V − λ2)
is finite dimensional.

Idea behind the proof. Write(
−∆ + V − λ2

)
R0(λ) = Id + V R0(λ),

so that, formally,(
−∆ + V − λ2

)−1
= R0(λ)

(
Id + V R0(λ)

)−1
: L2

comp −→ H2
loc. (7)

Using analytic Fredholm theory, one can show that (Id + V R0(λ))−1 is a meromorphic
family of operators.

In particular, we see from (7) that

• λ ∈ C\{0} is a scattering resonance if and only if there exists a non-trivial u ∈ L2
comp

such that u = −V R0(λ)u. Writing w = R0(λ)u and applying R0(λ) to the equation,
we also get the existence of w ∈ H2

loc such that w = −R0(λ)V w.

• If λ is not a resonance, then (−∆ +V −λ2)−1 and R0(λ) have the same range, which
can be described using Proposition 2.5.

• There can be only finitely many resonances in {=z > 0}, of the form iy, where −y2

is a negative eigenvalue of P .
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Theorem 3.3. An operator of the form (4) or (5) has no resonance in R.

In other words, for all λ ∈ R, and all f ∈ L2
comp(Rd), there exists a unique u such that

−∆u+ V u− λ2u = f

∂u(x)

∂|x|
− iλu(x) = Ox→+∞

(
1

|x|(d−1)/2

)
(8)

Proof when d = 1. Let [−K, K] contain the support of V , let u = −V R0(λ)u, and let
w = R0(λ)u. In particular,(

P − λ2
)
w = V w = −

(
−∆− λ2

)
w,

and this function vanishes outside [−K, K]. Furthermore, outside [−K, K], w must be of
the form w(x) = a±e

±iλx for some a± ∈ C. Now, since P is self-adjoint, we have

0 = =
(〈
w,
(
P − λ2

)
w
〉)
,

= =
(∫ K

−K
w
(
−∆− λ2

)
w dx

)
,

= =
(
[−ww′]K−K

)
,

= λ
(
|a+|2 + |a−|2

)
.

Therefore, when must have a+ = a− = 0, and, by the (linear) Cauchy-Lipschitz theorem,
we must have w = 0.

When d = 3, the argument is similar: we do an integration by parts to show that
w ≡ 0 outside a compact set. However, to conclude that w = 0, one cannot use the
Cauchy-Lipschitz theorem, and one must use a unique continuation principle (which
is much more complicated).

4 Perfectly matched layers and Complex scaling
Both in theoretical and numerical considerations, when considering the problem (8), it is
unpleasant to consider a PDE with a boundary condition at infinity.

The method of Perfectly Matched Layers (a.k.a. Complex Scaling) allows adding
non-self adjoint terms in the equation P − λ2u = f which will account for the Sommerfeld
radiation condition (3).

4.1 Perfectly matched layers when d = 1

Let g ∈ C 1(R;R) with g = 0 on [−R, R], with g′ ≥ 0, and g(x) = x when |x| ≥ 2R. We
define an operator Pg : H2 → L2 by

Pgu := − 1

1 + ig′

(
1

1 + ig′
u′
)′
. (9)
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Proposition 4.1. For any λ ∈ R, Pg + V − λ2 is invertible. If f ∈ L2
comp(R) with

supp(f) ⊂ [−R, R], the solution u of (Pg + V − λ2)u = f decays exponentially at
infinity. Furthermore, if v is the solution of −v′′ + V v − λ2v = f satisfying the
Sommerfeld radiation condition (3), then we have v ≡ u in [−R, R].

Hence, Proposition 4.1 allows us to solve (Pg + V − λ2)u = f instead of (8), which
is much easier, since we do not have conditions at infinity any more. However, proving
Proposition 4.1 directly (without using the complex scaling introduced below) is hard (try
to do it!), and we don’t really understand where the operator Pg comes from.

4.2 Another point of view: complex scaling

We will now explain the proof of Proposition 4.1 when V ≡ 0, by the method of complex
scaling. The case V 6= 0 can be recovered by using (7).

We introduce the curve γ(t) = t+ ig(t) : R→ Γ ⊂ C. For u : R→ C a function on R,
we define a function uΓ := u ◦ γ−1 : Γ→ C. For v : Γ→ C, we define the operator1

∂Γv :=
1

γ′(t)
(v ◦ γ)′, (10)

so that ∂ΓuΓ = ∂u, and Pgu = −∂2
ΓuΓ. If v is the unique solution of −v′′ − λ2v = f which

satisfies the Sommerfeld radiation condition (3), we have v(x) = a±e
±iλx when ±x ≥ R.

We then define a new function w : Γ→ C as follows:

w(z) =


a+e

iλz, if <z > R,

v(z) = v(x), if <z ∈ [−R, R],

a−e
−iλz, if <z < −R.

A direct computation shows that (−∂2
Γ − λ2)w = fΓ. Therefore, if we write u :=

w ◦ γ : R → C, we have (Pg − λ2)u = f . This will give us the existence of a solution,
if we check that u ∈ H2(R). The function u is clearly in H2

loc, and the fact that2
±=γ(x) > (|x| −R) when ±x > R implies that it decays exponentially at infinity. Note
that u coincides with v on [−R, R], as announced. The uniqueness is left as an exercise.

4.3 Perfectly matched layers in higher dimension

When d = 3, an analogue of (9) can be constructed as follows. We still consider g ∈ C 1(R;R)
with g = 0 on [−R, R], with g′ ≥ 0, and g(x) = x when |x| ≥ 2R. We define an operator
Pg : H2 → L2 by

Pg :=
(
(Id + iMg)

−1∇
)2
,

where
Mg(x) :=

g(|x|)
|x|3

(
|x|2Id− x⊗ x

)
+
g′(|x|)
|x|2

x⊗ x,

with x⊗ x is the orthogonal projection on x. The analogue of Proposition 4.1 then holds.
1One can check that the operator ∂Γ does not depend on the choice of the parametrization γ.
2Note that this the place where we use the Sommerfeld radiation condition.
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5 Exercises

Exercise 1.
Prove Proposition 2.1 when d = 1.

Hint: Young’s convolution inequality.

Exercise 2. Hard exercise
The aim of this exercise is to prove Proposition 2.1 when d = 3.
Question 1. Show that R0(x, y;λ) = Gλ(x− y), where

Gλ =
1

(2π)3/2
F−1

(
1

|ξ|2 − λ2

)
.

Recall the Fourier transform and its inverse

F [f ](ξ) :=
1

(2π)3/2

∫
R
f(x)e−ix·ξ dx and F−1[g](x) :=

1

(2π)3/2

∫
R
g(ξ)eix·ξ dξ.

Question 2. Show that ∫
S2
eirω·x dω =

2π

ir|x|
(
eir|x| − e−ir|x|

)
. (11)

Question 3. Deduce from the previous two questions that

Gλ(x) =
1

8iπ2|x|

∫
R

r

r2 − λ2
eir|x| dr − 1

8iπ2|x|

∫
R

r

r2 − λ2
e−ir|x| dr

Question 4. Apply the residue theorem to conclude.
Hint: sin θ ≤ 2

π
θ for 0 ≤ θ ≤ π

2
.

Solution 2.
Question 1. We have f = (−∆− λ2)R0(λ)f , so applying the Fourier transform, we obtain

F [f ](ξ) =
(
|ξ|2 − λ2

)
F [R0(λ)f ](ξ),

and we deduce

R0(λ)f = F−1

[
1

|ξ|2 − λ2
F [f ]

]
=

1

(2π)3/2
F−1

[
1

|ξ|2 − λ2

]
? f.

Therefore, (1) holds, with R0(x, y;λ) = Gλ(x− y), where

Gλ(x) =
1

(2π)3/2
F−1

[
1

|ξ|2 − λ2

]
(x).

Question 2. First, observe that the function x 7→
∫
S2 e

irω·x dω is invariant by rotation so
its value at x and (0, 0, |x|) is the same. We may therefore assume that x = (0, 0, |x|) in
the canonical basis of R3. Working in spherical coordinates, we obtain∫

S2
eirω·x dω =

∫ 2π

θ=0

∫ π

ϕ=0

eir|x| cosϕ sinϕ dϕ dθ

= 2π

[
−eir|x| cosϕ

ir|x|

]π
ϕ=0

=
2π

ir|x|
(
eir|x| − e−ir|x|

)
.
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Question 3. We compute

F−1

[
1

|ξ|2 − λ2

]
(x) =

1

(2π)3/2

∫
R3

eix·ξ

|ξ|2 − λ2
dx =

1

(2π)3/2

∫ +∞

0

∫
S2

eir x·ω

r2 − λ2
r2 dr dω,

and using (11), we obtain

Gλ(x) =
1

(2π)3

∫ +∞

0

∫
S2

eir x·ω

r2 − λ2
r2 dr dω,

=
1

(2π)2i|x|

∫ +∞

0

r

r2 − λ2

(
eir|x| − e−ir|x|

)
dr

=
1

8iπ2|x|

∫
R

r

r2 − λ2

(
eir|x| − e−ir|x|

)
dr

=
1

8iπ2|x|

∫
R

r

r2 − λ2
eir|x| dr − 1

8iπ2|x|

∫
R

r

r2 − λ2
e−ir|x| dr

Question 4. Now, the map r 7→ r
r2−λ2 e

ir|x| is meromorphic, with simple poles at r = ±λ. It
goes to zero when r → +∞ with =r ≥ 0, so we can use the residue theorem on the upper
half disc of centre 0 and radius R→ +∞ to obtain∫

R

r

r2 − λ2
eir|x| dr = 2iπResr=λ

(
r

r2 − λ2
eir|x|

)
= 2iπ

λ

2λ
eiλ|x| = iπeiλ|x|

Similarly, using the residue theorem on the lower half disc of centre 0 and radius R→ +∞,
we have ∫

R

r

r2 − λ2
e−ir|x| dr = −2iπ

(−λ)

−2λ
eiλ|x| = −iπeiλ|x|,

and finally we get

Gλ(x) =
1

8iπ2|x|
2iπeiλ|x| =

eiλ|x|

4π|x|
,

which proves the result.

Exercise 3.
Let V ∈ L∞(R) be a real-valued potential and λ ∈ R \ {0}. Assume that we have a
function u ∈ H2

loc(R) such that −u′′ + V u = λ2u.

Question 1. Show that there exists R > 0 and α±, β± ∈ C such that

u(x) = α±e
iλ|x| + β±e

−iλ|x|, for ± x ≥ R.

Question 2. Show that |α−|2 + |α+|2 = |β−|2 + |β+|2.
Hint: Wronskian.

Exercise 4.
Prove Proposition 2.5 when d = 1.
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Exercise 5.
Let f ∈ C∞comp(R3). Show that, for any λ ∈ R and ω ∈ S2, we have((

−∆− λ2
)−1

f
)

(rω) =
eiλr

4πr
F [f ](−λω) +Or→+∞

(
1

r2

)
.

This exercise proves part of Proposition 2.5.

Exercise 6.
Let V0 ∈ R and define the step potential V (x) = V0 1|x|≤1(x).
Question 1. Derive a necessary and sufficient criterion for λ ∈ C to be a resonance of the
equation −∂2

x + V .
Question 2. Find the asymptotic expansion of the resonances as <λ→ +∞.
Question 3. Find a condition on V0 to have negative eigenvalues (a.k.a. bound state).

Exercise 7. Symmetry of resonances for real-valued potentials
For a real-valued potential V ∈ L∞(Rd) in dimension 1 and 3, show that if λ is a resonance
then −λ is also a resonance.

Hint: Find a link between R0(λ) and R0(−λ).

Exercise 8. This exercise is an adaptation of [1].
In R3, consider cylindrical coordinates (r, θ, z) ∈ [0, ∞)× [0, 2π)×R. Recall that in such
coordinates, the Laplacian takes the form

∆f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
+
∂2f

∂z2
.

Consider the potential V ∈ L∞comp(R3;C) given by

V (r, θ, z) := eiθ 1r≤1(r) 1|z|≤1(z).

The aim of this exercise is to show that −∆ + V has no resonances.

If ` ∈ Z, we denote by Π` the projection of the `th Fourier mode:

Π`u(r, θ, z) =
ei`θ

2π

∫ 2π

0

u(r, φ, z)e−i`φ dφ.

Question 1. Let R > 0. Show that there exists C(R) > 0 such that for all ` ∈ Z and all
u ∈ H2(R3) supported in B(0, R) and which satisfies Π`u = u, we have

〈−∆u, u〉 ≥ C`2‖u‖2
L2 .

Question 2. Let ρ ∈ C∞comp(R3) which does not depend on θ. Show that for all λ ∈ C, there
exists C > 0 depending on ρ and λ such that for all ` ∈ Z,∥∥∥Π`ρ

(
−∆− λ2

)−1
ρΠ`

∥∥∥
L2→L2

≤ C(λ)

1 + |`|
.

Question 3. Show that, if u is a resonant state, there exists C > 0 such that we have, for
all ` ∈ Z,

‖Πj+1u‖L2 ≤
C

1 + |j|
‖Πju‖L2 .

Question 4. Conclude that −∆ + V has no resonances in C.
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Exercise 9.
Check the uniqueness part in Proposition 4.1, meaning that the problem (Pg+V −λ2)u = f
has a unique solution.
Hint: Do the same argument as in the Complex Scaling section, but the other way round.
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