Semiclapp summer school — Scattering theory
Exercise session II: lower bounds on resolvent for
trapping perturbations

The main goal of this session is to show the following Theorem, due
to Bony-Burg-Ramond [1], which gives a lower bound on the norm of the
resolvent in the case of arbitrary trapping.

In the following, we denote K C T*R? the trapped set at energy F for
the potential V and

R(E,h):=(P—-FE—i0)"}, P:=—-h*A+V.

Theorem 1. Suppose that Eg > 0, Kg, # 0, and x € C2(R?) is so that
X = 1 near 7(Kg,). Then, there exists Cy = Co(E,h) such that for any
d > 0 there exists hg = ho(d) so that

up IR, g2 > ELD
|E—Ep|<d

/h)
b
for 0 < h < hg.
Theorem 1 will follow from the following Kato’s local smoothing estimate.

Theorem 2. Suppose that Ey > 0 and let K(h) > 1 be a function on (0,1).
Suppose that for |E — Eg| < 6 and x € L, (RY) we have

K(h
IXR(E, Wl gesge < 0.

Then for ¢ € CX((E — 6, E +9),[0,1]) and u € L*(R%)

comp

/R Ixo(P) exp (—itP/h)ul2, dt < CK(h)[ull2.

with a constant C' > 0 independent of h.

In parts I-II, we admit Theorem 2 and show Theorem 1. Part III gives
a proof of Theorem 2 for the interested student or if time allows. We follow

3, §7.1].



I — Semiclassical defect measure of a coherent state

The goal of this part is to show
Lemma 3. Let (29,&) € T*R? and

— (2 Y exp (L (12 — Dlr 2
up(x) := (2wh)™ 4 exp (h(<x x0,&0) + 2]36 xo| )),
the coherent state concentrated at (zo,&). Then, for any b € S,(R?) with
0<~<s3,
(b*(x, hD)ug, up) = b(xg, &) + e(h),

le(h)] < Ch2 max sup |0,
|a|=1 p+Rd

with C' > 0 a constant depending only on the dimension d.

Lemma 3 shows that any sequence in h from a coherent state concen-
trated at (20, &) has for defect measure d;—z, ¢=¢,, and give a bound on the
convergence rate.

1. Show that
b (x, hD)uo,uo

/// wE=60) o= (2= +ul®) gy e 1z,
27rh

2. Show that, for z and ¢ fixed
/eij<w,£50>ei(lzx02+lwl2)dw =275 (21h) 2 e klE60,
3. Deduce that

(b (2, hD)ug, uo) = agb(zo,&o) + e(h),
with

2 (2nh)d / / (2,€) — b(xo, &))e w00 gony,
T

and ag a constant depending only on the dimension.
4. Show that ag = 1.
5. Show that

d

o

le(h)] < h2 |m‘a>§ sup |0%b 2 ;)d //e—;h(z—zo|2+|g_§0|2)dz d¢
[} T*Rd 7T

and conclude.



IT — Proof of Theorem 1
The plan is to construct a non-trivial ug € L? so that, for
¢ € C((Eog —0,E0 +6),[0,1]),  »(Eo) =1,

we have, for some ¢ > 0

. 1
[ Py exp (it P/myunl 3 dt > clog - uol

and use Theorem 2 to conclude. We recall, from functional calculus for
pseudodifferential operators (see for example [2, Chapter 8])

p(P(M)x*¢(P(h)) = a®(z,hD), a e S(T*RY),
a(z, €) = x(x)*p(p(x,€)) + O(h{x) ~>(€) ™).

Let
CL;U — eitP/haw(x7 hD)efitP/h.

We will use the following consequence of Egorov’s Theorem (see eg [4, Chap-
ter 11]): for a > 0 sufficiently small and independent of ¢, we have, uniformly
n0<t<a log%

1
ar € Sy(T'RY), 0 <y < 3
a; — (exptH,)*a € h*~3S, (T*RY).

6. Show that
alog%
/ Ixo(P) exp (=it P/R)uo|2s dt > / (0 (2, hD)ug, uo) dt.
R 0

7. Let (z9,&0) € Kg,. Show that, for any t € R
(exp tHp)* X (p))(x0, &) = 1.

8. Deduce that )
at(wo,§o) = 1+ O(h2),

uniformly for 0 < t < alog %

9. Conclude by considering the coherent state concentrated at (xg, &p).



IIT — Proof of Theorem 2

We let '
T:ue L*(RY — xo(P)e /" e L2 (R x RY),

so that by a TT* argument, it is enough to show that
TT* = O(K(h)) in L*(R x RY) — L?(R x RY).
10. Show that
T f = (xe‘i'P/hsO(P)zx> x [,
where * denotes the convolution in the time variable.

11. Let the inverse semiclassical Fourier transform

Frbb) = o [ oo

We recall the Stone formula: the spectral measure of P writes

dE\(P) = i((P —A—i0)"t — (P = X+i0)"Hd\.

21

Show that

- —ie 1 s\ —
Fin(e*Pho(P)?) = Sy E +(P — A Fi0) Lp(N)2
I

12. Conclude by using the relation between semiclassical Fourier transform
and convolution.

Supplementary exercise: complex absorbing poten-
tial
Let V € C*(R% R) and

P:=—h’A+V.

Let a € C°(R,R;) be so that P satisfies the following exterior control
condition:

Vp e T*RY, Tz (exp(tHp)p) — 00 as t — —o0
or 3t <0s.t. my(exp(tHy)p) € {a > 0}.



By adapting the proof of the non-trapping resolvent estimate seen during
the lesson, show that for any x € C2°(R?), there exists hg > 0 and C' > 0
so that, for any f € L?(R%), E > 0, and any outgoing solution u to

(P — E —ia)u = x/,

we have, for 0 < h < hg

C
xullze < 21 fllEe-
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