Semiclapp summer school - Scattering theory Exercise session II: lower bounds on resolvent for trapping perturbations

The main goal of this session is to show the following Theorem, due to Bony-Burq-Ramond [1], which gives a lower bound on the norm of the resolvent in the case of arbitrary trapping.

In the following, we denote $K_{E} \subset T^{*} \mathbb{R}^{d}$ the trapped set at energy E for the potential V and

$$
R(E, h):=(P-E-i 0)^{-1}, \quad P:=-h^{2} \Delta+V .
$$

Theorem 1. Suppose that $E_{0}>0, K_{E_{0}} \neq \emptyset$, and $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is so that $\chi=1$ near $\pi\left(K_{E_{0}}\right)$. Then, there exists $C_{0}=C_{0}(E, h)$ such that for any $\delta>0$ there exists $h_{0}=h_{0}(\delta)$ so that

$$
\sup _{\left|E-E_{0}\right|<\delta}\|\chi R(E, h) \chi\|_{L^{2} \rightarrow L^{2}} \geq \frac{\log (1 / h)}{C_{0} h} .
$$

for $0<h<h_{0}$.
Theorem 1 will follow from the following Kato's local smoothing estimate.
Theorem 2. Suppose that $E_{0}>0$ and let $K(h) \geq 1$ be a function on $(0,1)$. Suppose that for $\left|E-E_{0}\right|<\delta$ and $\chi \in L_{\text {comp }}^{\infty}\left(\mathbb{R}^{d}\right)$ we have

$$
\|\chi R(E, h) \chi\|_{L^{2} \rightarrow L^{2}} \leq \frac{K(h)}{h} .
$$

Then for $\varphi \in C_{c}^{\infty}((E-\delta, E+\delta),[0,1])$ and $u \in L^{2}\left(\mathbb{R}^{d}\right)$

$$
\int_{\mathbb{R}}\|\chi \varphi(P) \exp (-i t P / h) u\|_{L^{2}}^{2} d t \leq C K(h)\|u\|_{L^{2}}^{2},
$$

with a constant $C>0$ independent of h.
In parts I-II, we admit Theorem 2 and show Theorem 1. Part III gives a proof of Theorem 2 for the interested student or if time allows. We follow [3, §7.1].

I - Semiclassical defect measure of a coherent state

The goal of this part is to show
Lemma 3. Let $\left(x_{0}, \xi_{0}\right) \in T^{*} \mathbb{R}^{d}$ and

$$
u_{0}(x):=(2 \pi h)^{-\frac{d}{4}} \exp \left(\frac{i}{h}\left(\left\langle x-x_{0}, \xi_{0}\right\rangle+\frac{i}{2}\left|x-x_{0}\right|^{2}\right)\right)
$$

the coherent state concentrated at $\left(x_{0}, \xi_{0}\right)$. Then, for any $b \in \mathcal{S}_{\gamma}\left(\mathbb{R}^{d}\right)$ with $0<\gamma<\frac{1}{2}$,

$$
\begin{gathered}
\left\langle b^{w}(x, h D) u_{0}, u_{0}\right\rangle=b\left(x_{0}, \xi_{0}\right)+e(h), \\
|e(h)| \leq C h^{\frac{1}{2}} \max _{|\alpha|=1} \sup _{T^{*} \mathbb{R}^{d}}\left|\partial^{\alpha} b\right|,
\end{gathered}
$$

with $C>0$ a constant depending only on the dimension d.
Lemma 3 shows that any sequence in h from a coherent state concentrated at $\left(x_{0}, \xi_{0}\right)$ has for defect measure $\delta_{x=x_{0}, \xi=\xi_{0}}$, and give a bound on the convergence rate.

1. Show that

$$
\begin{aligned}
& \left\langle b^{w}(x, h D) u_{0}, u_{0}\right\rangle= \\
& \frac{2^{d}}{(2 \pi h)^{\frac{3 d}{2}}} \iiint b(z, \xi) e^{\frac{2 i}{h}\left\langle w, \xi-\xi_{0}\right\rangle} e^{-\frac{1}{h}\left(\left|z-x_{0}\right|^{2}+|w|^{2}\right)} d w d \xi d z .
\end{aligned}
$$

2. Show that, for z and ξ fixed

$$
\int e^{\frac{2 i}{h}\left\langle w, \xi-\xi_{0}\right\rangle} e^{-\frac{1}{h}\left(\left|z-x_{0}\right|^{2}+|w|^{2}\right)} d w=2^{-\frac{d}{2}}(2 \pi h)^{\frac{d}{2}} e^{-\frac{1}{h}\left|\xi-\xi_{0}\right|^{2}}
$$

3. Deduce that

$$
\left\langle b^{w}(x, h D) u_{0}, u_{0}\right\rangle=a_{d} b\left(x_{0}, \xi_{0}\right)+e(h),
$$

with

$$
e(h):=\frac{2^{\frac{d}{2}}}{(2 \pi h)^{d}} \iint\left(b(z, \xi)-b\left(x_{0}, \xi_{0}\right)\right) e^{-\frac{1}{h}\left(\left|z-x_{0}\right|^{2}+|w|^{2}\right)} d z d w
$$

and a_{d} a constant depending only on the dimension.
4. Show that $a_{d}=1$.
5. Show that

$$
|e(h)| \leq h^{\frac{1}{2}} \max _{|\alpha|=1} \sup _{T^{*} \mathbb{R}^{d}}\left|\partial^{\alpha} b\right| \frac{2^{\frac{d}{2}}}{(2 \pi h)^{d}} \iint e^{-\frac{1}{2 h}\left(\left|z-x_{0}\right|^{2}+\left|\xi-\xi_{0}\right|^{2}\right)} d z d \xi
$$

and conclude.

II - Proof of Theorem 1

The plan is to construct a non-trivial $u_{0} \in L^{2}$ so that, for

$$
\varphi \in C_{c}^{\infty}\left(\left(E_{0}-\delta, E_{0}+\delta\right),[0,1]\right), \quad \varphi\left(E_{0}\right)=1,
$$

we have, for some $c>0$

$$
\int_{\mathbb{R}}\left\|\chi \varphi(P) \exp (-i t P / h) u_{0}\right\|_{L^{2}}^{2} d t \geq c \log \frac{1}{h}\left\|u_{0}\right\|_{L^{2}}^{2},
$$

and use Theorem 2 to conclude. We recall, from functional calculus for pseudodifferential operators (see for example [2, Chapter 8])

$$
\begin{gathered}
\varphi(P(h)) \chi^{2} \varphi(P(h))=a^{w}(x, h D), \quad a \in \mathcal{S}\left(T^{*} \mathbb{R}^{d}\right), \\
a(x, \xi)=\chi(x)^{2} \varphi(p(x, \xi))+O\left(h\langle x\rangle^{-\infty}\langle\xi\rangle^{-\infty}\right)
\end{gathered}
$$

Let

$$
a_{t}^{w}:=e^{i t P / h} a^{w}(x, h D) e^{-i t P / h} .
$$

We will use the following consequence of Egorov's Theorem (see eg [4, Chapter 11]): for $\alpha>0$ sufficiently small and independent of δ, we have, uniformly in $0<t<\alpha \log \frac{1}{h}$

$$
\begin{gathered}
a_{t} \in \mathcal{S}_{\gamma}\left(T^{*} \mathbb{R}^{d}\right), 0<\gamma<\frac{1}{2}, \\
a_{t}-\left(\exp t H_{p}\right)^{*} a \in h^{2-3 \gamma} S_{\gamma}\left(T^{*} \mathbb{R}^{d}\right) .
\end{gathered}
$$

6. Show that

$$
\int_{\mathbb{R}}\left\|\chi \varphi(P) \exp (-i t P / h) u_{0}\right\|_{L^{2}}^{2} d t \geq \int_{0}^{\alpha \log \frac{1}{h}}\left\langle a_{t}^{w}(x, h D) u_{0}, u_{0}\right\rangle d t .
$$

7. Let $\left(x_{0}, \xi_{0}\right) \in K_{E_{0}}$. Show that, for any $t \in \mathbb{R}$

$$
\left(\exp t H_{p}\right)^{*}\left[\chi^{2} \varphi(p)\right]\left(x_{0}, \xi_{0}\right)=1
$$

8. Deduce that

$$
a_{t}\left(x_{0}, \xi_{0}\right)=1+O\left(h^{\frac{1}{2}}\right),
$$

uniformly for $0<t<\alpha \log \frac{1}{h}$.
9. Conclude by considering the coherent state concentrated at $\left(x_{0}, \xi_{0}\right)$.

III - Proof of Theorem 2

We let

$$
T: u \in L^{2}\left(\mathbb{R}^{d}\right) \mapsto \chi \varphi(P) e^{-i t P / h} \in L_{\mathrm{loc}}^{2}\left(\mathbb{R} \times \mathbb{R}^{d}\right)
$$

so that by a $T T^{*}$ argument, it is enough to show that

$$
T T^{*}=O(K(h)) \text { in } L^{2}\left(\mathbb{R} \times \mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R} \times \mathbb{R}^{d}\right)
$$

10. Show that

$$
T T^{*} f=\left(\chi e^{-i \bullet P / h} \varphi(P)^{2} \chi\right) * f
$$

where $*$ denotes the convolution in the time variable.
11. Let the inverse semiclassical Fourier transform

$$
\mathcal{F}_{t \mapsto \lambda}^{-1} \psi(\lambda):=\frac{1}{2 \pi} \int e^{i t \lambda / h} \psi(t) d t
$$

We recall the Stone formula: the spectral measure of P writes

$$
d E_{\lambda}(P)=\frac{1}{2 \pi i}\left((P-\lambda-i 0)^{-1}-(P-\lambda+i 0)^{-1}\right) d \lambda .
$$

Show that

$$
\mathcal{F}_{t \mapsto \lambda}^{-1}\left(e^{-i \bullet P / h} \varphi(P)^{2}\right)=\frac{1}{2 \pi i} \sum_{ \pm} \pm(P-\lambda \mp i 0)^{-1} \varphi(\lambda)^{2} .
$$

12. Conclude by using the relation between semiclassical Fourier transform and convolution.

Supplementary exercise: complex absorbing potential

Let $V \in C_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and

$$
P:=-h^{2} \Delta+V .
$$

Let $a \in C_{c}^{\infty}\left(\mathbb{R}, \mathbb{R}_{+}\right)$be so that P satisfies the following exterior control condition:

$$
\begin{aligned}
\forall \rho \in T^{*} \mathbb{R}^{d}, & \pi_{x}\left(\exp \left(t H_{p}\right) \rho\right) \rightarrow \infty \text { as } t \rightarrow-\infty \\
& \text { or } \exists t<0 \text { s.t. } \pi_{x}\left(\exp \left(t H_{p}\right) \rho\right) \in\{a>0\} .
\end{aligned}
$$

By adapting the proof of the non-trapping resolvent estimate seen during the lesson, show that for any $\chi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, there exists $h_{0}>0$ and $C>0$ so that, for any $f \in L^{2}\left(\mathbb{R}^{d}\right), E>0$, and any outgoing solution u to

$$
(P-E-i a) u=\chi f
$$

we have, for $0<h \leq h_{0}$

$$
\|\chi u\|_{L^{2}} \leq \frac{C}{h}\|f\|_{L^{2}}
$$

References

[1] Jean-François Bony, Nicolas Burq, and Thierry Ramond. Minoration de la résolvante dans le cas captif. C. R. Math. Acad. Sci. Paris, 348(23-24):1279-1282, 2010.
[2] Mouez Dimassi and Johannes Sjöstrand. Spectral asymptotics in the semi-classical limit, volume 268 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1999.
[3] Semyon Dyatlov and Maciej Zworski. Mathematical theory of scattering resonances, volume 200 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2019.
[4] Maciej Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.

