
Semiclapp summer school – Scattering theory

Exercise session II: lower bounds on resolvent for

trapping perturbations

The main goal of this session is to show the following Theorem, due
to Bony-Burq-Ramond [1], which gives a lower bound on the norm of the
resolvent in the case of arbitrary trapping.

In the following, we denote KE ⊂ T ∗Rd the trapped set at energy E for
the potential V and

R(E, h) := (P − E − i0)−1, P := −h2∆ + V.

Theorem 1. Suppose that E0 > 0, KE0 6= ∅, and χ ∈ C∞c (Rd) is so that
χ = 1 near π(KE0). Then, there exists C0 = C0(E, h) such that for any
δ > 0 there exists h0 = h0(δ) so that

sup
|E−E0|<δ

‖χR(E, h)χ‖L2→L2 ≥
log(1/h)

C0h
.

for 0 < h < h0.

Theorem 1 will follow from the following Kato’s local smoothing estimate.

Theorem 2. Suppose that E0 > 0 and let K(h) ≥ 1 be a function on (0, 1).
Suppose that for |E − E0| < δ and χ ∈ L∞comp(Rd) we have

‖χR(E, h)χ‖L2→L2 ≤
K(h)

h
.

Then for ϕ ∈ C∞c ((E − δ, E + δ), [0, 1]) and u ∈ L2(Rd)∫
R
‖χϕ(P ) exp (−itP/h)u‖2L2 dt ≤ CK(h)‖u‖2L2 ,

with a constant C > 0 independent of h.

In parts I-II, we admit Theorem 2 and show Theorem 1. Part III gives
a proof of Theorem 2 for the interested student or if time allows. We follow
[3, §7.1].
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I – Semiclassical defect measure of a coherent state

The goal of this part is to show

Lemma 3. Let (x0, ξ0) ∈ T ∗Rd and

u0(x) := (2πh)−
d
4 exp

( i
h

(
〈x− x0, ξ0〉+

i

2
|x− x0|2

))
,

the coherent state concentrated at (x0, ξ0). Then, for any b ∈ Sγ(Rd) with
0 < γ < 1

2 ,

〈bw(x, hD)u0, u0〉 = b(x0, ξ0) + e(h),

|e(h)| ≤ Ch
1
2 max
|α|=1

sup
T ∗Rd

|∂αb|,

with C > 0 a constant depending only on the dimension d.

Lemma 3 shows that any sequence in h from a coherent state concen-
trated at (x0, ξ0) has for defect measure δx=x0,ξ=ξ0 , and give a bound on the
convergence rate.

1. Show that

〈bw(x, hD)u0, u0〉 =

2d

(2πh)
3d
2

∫ ∫ ∫
b(z, ξ)e

2i
h
〈w,ξ−ξ0〉e−

1
h
(|z−x0|2+|w|2)dw dξ dz.

2. Show that, for z and ξ fixed∫
e

2i
h
〈w,ξ−ξ0〉e−

1
h
(|z−x0|2+|w|2)dw = 2−

d
2 (2πh)

d
2 e−

1
h
|ξ−ξ0|2 .

3. Deduce that

〈bw(x, hD)u0, u0〉 = adb(x0, ξ0) + e(h),

with

e(h) :=
2

d
2

(2πh)d

∫ ∫
(b(z, ξ)− b(x0, ξ0))e−

1
h
(|z−x0|2+|w|2) dzdw,

and ad a constant depending only on the dimension.

4. Show that ad = 1.

5. Show that

|e(h)| ≤ h
1
2 max
|α|=1

sup
T ∗Rd

|∂αb| 2
d
2

(2πh)d

∫ ∫
e−

1
2h

(|z−x0|2+|ξ−ξ0|2) dz dξ

and conclude.
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II – Proof of Theorem 1

The plan is to construct a non-trivial u0 ∈ L2 so that, for

ϕ ∈ C∞c ((E0 − δ, E0 + δ), [0, 1]), ϕ(E0) = 1,

we have, for some c > 0∫
R
‖χϕ(P ) exp (−itP/h)u0‖2L2 dt ≥ c log

1

h
‖u0‖2L2 ,

and use Theorem 2 to conclude. We recall, from functional calculus for
pseudodifferential operators (see for example [2, Chapter 8])

ϕ(P (h))χ2ϕ(P (h)) = aw(x, hD), a ∈ S(T ∗Rd),
a(x, ξ) = χ(x)2ϕ(p(x, ξ)) +O(h〈x〉−∞〈ξ〉−∞).

Let
awt := eitP/haw(x, hD)e−itP/h.

We will use the following consequence of Egorov’s Theorem (see eg [4, Chap-
ter 11]): for α > 0 sufficiently small and independent of δ, we have, uniformly
in 0 < t < α log 1

h

at ∈ Sγ(T ∗Rd), 0 < γ <
1

2
,

at − (exp tHp)
∗a ∈ h2−3γSγ(T ∗Rd).

6. Show that∫
R
‖χϕ(P ) exp (−itP/h)u0‖2L2 dt ≥

∫ α log 1
h

0
〈awt (x, hD)u0, u0〉 dt.

7. Let (x0, ξ0) ∈ KE0 . Show that, for any t ∈ R

(exp tHp)
∗[χ2ϕ(p)](x0, ξ0) = 1.

8. Deduce that
at(x0, ξ0) = 1 +O(h

1
2 ),

uniformly for 0 < t < α log 1
h .

9. Conclude by considering the coherent state concentrated at (x0, ξ0).
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III – Proof of Theorem 2

We let
T : u ∈ L2(Rd) 7→ χϕ(P )e−itP/h ∈ L2

loc(R× Rd),

so that by a TT ∗ argument, it is enough to show that

TT ∗ = O(K(h)) in L2(R× Rd)→ L2(R× Rd).

10. Show that
TT ∗f =

(
χe−i•P/hϕ(P )2χ

)
∗ f,

where ∗ denotes the convolution in the time variable.

11. Let the inverse semiclassical Fourier transform

F−1t7→λψ(λ) :=
1

2π

∫
eitλ/hψ(t) dt.

We recall the Stone formula: the spectral measure of P writes

dEλ(P ) =
1

2πi

(
(P − λ− i0)−1 − (P − λ+ i0)−1)dλ.

Show that

F−1t7→λ
(
e−i•P/hϕ(P )2) =

1

2πi

∑
±
±(P − λ∓ i0)−1ϕ(λ)2.

12. Conclude by using the relation between semiclassical Fourier transform
and convolution.

Supplementary exercise: complex absorbing poten-
tial

Let V ∈ C∞c (Rd,R) and
P := −h2∆ + V.

Let a ∈ C∞c (R,R+) be so that P satisfies the following exterior control
condition:

∀ρ ∈ T ∗Rd, πx
(

exp(tHp)ρ
)
→∞ as t→ −∞

or ∃t < 0 s.t. πx
(

exp(tHp)ρ
)
∈ {a > 0}.
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By adapting the proof of the non-trapping resolvent estimate seen during
the lesson, show that for any χ ∈ C∞c (Rd), there exists h0 > 0 and C > 0
so that, for any f ∈ L2(Rd), E > 0, and any outgoing solution u to

(P − E − ia)u = χf,

we have, for 0 < h ≤ h0

‖χu‖L2 ≤
C

h
‖f‖L2 .
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